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ABSTRACT

Ensemble-based data assimilation techniques are being explored as possible alternatives to cur-

rent operational analysis techniques such as 3- or 4-dimensional variational assimilation. Ensemble-

based assimilation techniques utilize an ensemble of parallel data assimilation and forecast cy-

cles. The background-error covariances are estimated using the forecast ensemble and are used

to produce an ensemble of analyses. The background-error covariances are flow dependent and

often have very complicated structure, providing a very different adjustment to the observations

than are seen from methods such as 3- dimensional variational assimilation. Though computa-

tionally expensive, ensemble-based techniques are relatively easy to code, since no adjoint nor

tangent-linear models are required, and tests in simple models suggest that dramatic improve-

ments over existing operational methods may be possible.

A review of the ensemble-based assimilation is provided here, starting from the basic concepts

of Bayesian assimilation. Without some approximation, Bayesian assimilation is computation-

ally impossible for large-dimensional systems. Assuming normality of error statistics and linear-

ity of error growth, the state and its error covariance may be predicted optimally using Kalman

filter (KF) techniques. The ensemble Kalman filter (EnKF) is then described. The EnKF is an

approximation to the KF in that background-error covariances are estimated from a finite ensem-

ble of forecasts. However, no assumptions about linearity of error growth are made. Recent al-

gorithmic variants on the standard EnKF are also described, as well as methods for simplifying

the computations and increasing the accuracy. Examples of ensemble-based assimilations are

provided in simple and more realistic dynamical systems.
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1. INTRODUCTION

The purpose of this article is to introduce the reader to promising new experimental meth-

ods for atmospheric data assimilation involving the use of ensemble forecasts (e.g., Evensen

1994, Evensen and van Leeuwen 1996, Houtekamer and Mitchell 1998, Burgers et al. 1998,

Tippett et al. 2003, Anderson 2003, Evensen 2003, Lorenc 2003). There is a natural linkage be-

tween data assimilation and ensemble forecasting. Ensemble forecasts (Toth and Kalnay 1993,

1997, Molteni et al. 1996, Houtekamer et al. 1996a) are designed to estimate the flow-dependent

uncertainty of the forecast; data assimilation techniques require accurate estimates of forecast

uncertainty in order to optimally blend the prior forecast(s) with new observations. Ensemble-

based assimilation methods integrate the two steps; the ensemble of forecasts is used to estimate

forecast-error statistics during the data assimilation step, and the output of the assimilation is a

set of analyses. This process is cycled, the short-term ensemble forecasts from the set of analy-

ses providing the error statistics again for the next assimilation cycle.

Rather than starting with the specifics of recently proposed ensemble-based assimilation

techniques, in this paper we will take a step back and try to motivate their use by quickly devel-

oping them from first principles, noting the approximations that have been made along the way.

This will take us from Bayesian data assimilation (section 2), which is conceptually simple but

computationally prohibitive, to the Kalman filter (section 3), a simplification assuming normal-

ity and linearity of error growth, to ensemble-based data assimilation methods (section 4), which

may be more computationally tractable and robust. This discussion will include a description of

stochastic and determininstic update algorithms, a simple example, and discussion of model er-

ror and covariance localization. Important ongoing research issues are discussed (section 5) and

conclusions provided (section 6).

Several other useful review papers on ensemble-based data assimilation are available. Evensen

(2003) provides a review of most of the proposed ensemble-based assimilation approaches, a

more theoretical examination of the treatment of model errors, and a wide array of references

to ensemble-based assimilation in the atmospheric and oceanographic literature. Lorenc (2003)
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also reviews ensemble methods, and in particular provides some thoughts on the potential rel-

ative strengths and weaknesses compared to the current state-of-the-art assimilation algorithm,

4D-variational analysis (4D-Var). Tippett et al. (2003) discusses the similarities and differences

between a number of the proposed algorithms, and Anderson (2003) discusses a way of inter-

preting ensemble-based techniques using simple linear regression terminology.

To keep the size of this manuscript manageable, several topics will be skipped. This manuscript

will not describe the full variety of ensemble filters, in particular skipping a discussion of reduced-

rank filters. Tangential subjects such as atmospheric predictability will be discussed only in rele-

vance to the assimilation problem, and applications of ensemble filters to problems like adaptive

observations will be neglected.

In subsequent discussion, the atmosphere state, which is of course a continuum, is assumed

to be adequately described in discretized fashion, perhaps by the values of winds, temperature,

humidity, and pressure at a set of grid points.

2. BAYESIAN DATA ASSIMILATION

Conceptually, the atmospheric data assimilation problem is a relatively simple one. The

task at hand is to accurately estimate the probability density function (pdf) for the current atmo-

spheric state given all current and past observations. Much of the material in this section follows

Anderson and Anderson (1999). If the reader is interested in further background material on the

subject, Lorenc (1986) provides a formulation of data assimilation in a Bayesian context, and

Cohn (1997) provides a more rigorous statistical formulation of the problem.

When considering Bayesian assimilation, there are two general steps to the assimilation.

Assume that a pdf of the state of the atmosphere is available (in the lack of any knowledge, this

may be the climatological pdf). The first step is to assimilate recent observations, thereby sharp-

ening the pdf. The second step is to propagate the pdf forward in time until new observations

are available. If the pdf is initially sharp (i.e., the distribution is relatively narrow), then chaotic

dynamics and model uncertainty will usually broaden the probability distribution. The update
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and forecast steps are then repeated. We will describe each of these steps separately, starting

with the assimilation of new observations.

a. Bayesian updating

Assume that an estimate of the pdf has been propagated forward to a time when observa-

tions are available. The state can be estimated more specifically by incorporating information

from the new observations. This will be termed the “update.”

The following notational convention is used. Boldface characters will denote vectors or ma-

trices, while use of the italicized font denotes a scalar. xt
t−1 will denote the n-dimensional true

model state at time t − 1: xt
t−1 = [xt

t−1(1), . . . , x
t
t−1(n)]. Also, assume a collection of observa-

tions ψt. This vector includes observations yt at the most recent time as well as observations at

all previous times ψt = [yt, ψt−1], where ψt−1 = [yt−1, . . . , y0]. There are Mt observations at

time t, i.e., yt = [yt(1), . . . , yt(Mt)]. Let P (xt
t) be a multivariate probability density function, de-

fined such that Pr(a ≤ xt
t ≤ b) =

∫ b
a P (xt

t) dxt
t, and probability density integrates to 1.0 over the

entire phase space.

Formally, the update problem is to accurately estimate P (xt
t | ψt), the probability density

estimate of the current atmospheric state given the current and past observations. Bayes’ Rule

tells us that this quantity can be re-expressed as

P (xt
t | ψt) ∝ P (ψt | xt

t) P (xt
t). (1)

Bayes’ Rule is usually expressed with a normalization constant in the denominator on the right-

hand side of (1); for simplicity, the term in the denominator will be dropped here, and it is as-

sumed that when coded, the developer will ensure that probability density integrates to 1.0.

One hopefully minor assumption is made: observation errors are independent from one time

to the next. Hence, P (ψt | xt
t) = P (yt | xt

t) P (ψt−1 | xt
t). This may not be true for observations

from satellites, where instrumentation biases may be difficult to remove. Also, errors of obser-

vation representativeness (Daley 1993) may be flow dependent and correlated in time. But under
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this assumption, (1) is equivalent to

P (xt
t | ψt) ∝ P (yt | xt

t) P (ψt−1 | xt
t) P (xt

t). (2)

By Bayes’ Rule again, P (ψt−1 | xt
t) P (xt

t) ∝ P (xt
t | ψt−1). Hence, (2) simplifies to

P (xt
t | ψt) ∝ P (yt | xt

t) P (xt
t | ψt−1). (3)

In principle, equation (3) is elegantly simple. It expresses a recursive relationship: the “poste-

rior,” the pdf for the current model state given all the observations, is a product of the the proba-

bility distribution for the current observations P (yt | xt
t) and the “prior,” P (xt

t | ψt−1), also known

as the “background.” The prior is the pdf of the model state at time t given all the past observa-

tions up to time t− 1. Typically, the prior will have been estimated in some fashion from a cycle

of previous data assimilations and short-term forecasts up to the current time; approximations of

how this may be computed will be discussed in section 2b.

Let’s now demonstrate the update step of Bayesian assimilation with a simple example.

P (xt
t | ψt−1) is an estimate of the prior for a two-dimensional model state. This was produced by

assimilating all prior observations up to and including time t − 1 and estimating in some man-

ner how that pdf has evolved in the time interval between t − 1 and t. Consider how to update

the pdf given a new scalar observation y, which in this example is observing the same quantity

as the first component of the state vector measures. The pdf for the observation P (yt | xt
t) is as-

sumed to be distributed normally about the actual observation, ∼ N (yt, σ
2). Here, let yt = 58

and σ2 = 100.

Selected contours of the prior are plotted in Fig. 1a ; as shown, the prior is bimodal. The

shape of the marginal prior distributions P (xt(1) | ψt−1) and P (xt(2) |ψt−1) are plotted along

each axis in solid lines. The dashed line denotes the observation probability distribution P (yt | xt
t).

This probability varies with the value xt(1), but given xt(1) is the same for any value of xt(2). The

updated posterior distribution is computed using (3) and is shown in Fig. 1b. Note that the as-

similation of the observation enhanced the probability in the lobe overlapping the observation
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distribution and decreased it in the other lobe. Overall, the posterior distribution is more sharp

(specific) than the prior, as is expected.

b. Forecasting of probability density

Assume that we have an (imperfect) nonlinear forecast model operator M so that the time

evolution of the state can be written as a stochastic differential equation:

dxt
t = M(xt

t) dt + G(xt
t) dq. (4)

dq is a Brownian-motion process with covariance Qtdt and G is the model-error forcing. Con-

ceptually, the time evolution of the pdf can be modeled with the Fokker-Planck equation (e.g.,

Gardiner 1985, section 5.3):

∂P (xt
t)

∂t
= −∇ ·

[
M(xt

t) P (xt
t)

]
+
∑
i,j

∂2

∂xt
t(i)∂xt

t(j)

(GQtGT

2

)
ij

P (xt
t) (5)

If GQtGT is zero, then only the first term remains, and the Fokker-Planck equation reduces to the

Liouville equation (Ehrendorfer 1994ab), a continuity equation for the conservation of probabil-

ity. Probability thus diffuses with time according to the chaotic dynamics of the forecast model.

The second term includes the effects of model error, including the increased diffusion of proba-

bility due to model uncertainty as well as noise-induced drift (Sardeshmukh et al. 2001).

c. Limitations of Bayesian data assimilation

Unfortunately, neither the update nor the forecast steps in Bayesian data assimilation can be

applied directly to real-world NWP applications. For the update step, one problem with mod-

eling a complicated pdf in higher dimensions is the “curse of dimensionality” (e.g., Hastie et

al. 2001, pp. 22-27). Were one to try estimate the probability density in a higher-dimensional

space using a small ensemble, one would find that the model of probability was very poor unless

simplifying assumptions about the form of the distribution were made. Even were this problem

surmountable, the computational cost would be extravagant. In the prior example the probabil-

ity density was evaluated on a 100×100 grid. Suppose a similarly complicated structure for the

7



prior existed in 100 dimensions. Then if the joint probabilities were monitored on a similar grid

for each dimension, this would involve evaluating and modifying 100100 density estimates. Such

computations are already prohibitive for a 100-dimensional model state; the problem becomes

incomprehensible for model states of O(107).

Similarly, the Fokker-Planck equation is conceptually appealing but practically unusable for

large systems; The pdf cannot be forecast in high-dimensional systems using (5) due to compu-

tational constraints. Consequently, Monte-Carlo techniques are typically applied. Assume that

it is possible to randomly sample P (xt
t | ψt). Then an ensemble of forecasts is conducted for-

ward from the random sample, including some appropriate way to include the uncertainty due to

model error. In this manner, a random sample of state estimates can be produced up to the next

time observational data is available. In section 4, we will return to consider how to utilize the

ensemble forecast data in the update process.

3. KALMAN FILTERS

An approximation to Bayesian state estimation is now considered under assumptions of lin-

earity of error growth and normality of error distributions. This approximate method is known

as the Kalman filter (Kalman 1960, Kalman and Bucy 1961, Jazwinski 1970 sect. 7.3, Gelb 1974

sect. 4.2, Maybeck 1979 sect 5.3, Ghil 1989, Daley 1991 sect 13.3, Cohn 1997, Talagrand 1997,

Daley 1997). There are two components of the Kalman filter, an update step where the state es-

timate and an estimate of the forecast uncertainty are adjusted to new observations, and a fore-

cast step, where the updated state and the uncertainty estimate are propagated forward to the

time when the next set of observations become available.

a. The extended Kalman filter

We now consider an implementation of the Kalman filter called the extended Kalman fil-

ter, or “EKF” (Jazwinski 1970, Gelb 1974, Ghil and Malanotte-Rizzoli 1991, Gauthier et al.

1993, Bouttier 1994). The EKF assumes that background and observation error distributions are

Gaussian: xb
t = xt

t + e, where e ∼ N (0, Pb
t ). That is, the probability density of the prior is dis-
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tributed as a multivariate normal distribution with known n × 1 mean background xb
t and n × n

background-error covariance matrix Pb
t . Similarly, y = H(xt

t) + ε, where ε ∼ N (0, R) and H is

the Mt × n “forward” operator that maps the state to the observations. H is the m × n Jacobian

matrix of H = ∂H
∂x

. Also, let M represent the nonlinear model forecast operator. M is the n × n

Jacobian matrix of M, M = ∂M
∂x

. M is often called the transition matrix between times t and

t + 1. MT is its adjoint (see Le Dimet and Talagrand (1986) and Lacarra and Talagrand (1988)).

Q will represent the n × n covariance of model errors accumulated between update cycles.

The EKF equations are

xa
t = xb

t + K
(
yt −H(xb

t )
)
, (6a)

K = Pb
t HT(HPb

t HT + R)−1. (6b)

Pa
t = (I − KH) Pb

t (6c)

xb
t+1 = M(xa

t ) (6d)

Pb
t+1 = MPa

t MT + Q = M (MPa
t )T + Q. (6e)

Equations (6a-c) describe the update step. The optimal analysis state xa
t is estimated by

correcting the background xb
t toward the “observation increment” yt − H(xb

t ), weighted by the

Kalman-gain matrix K. The effect of K is to apply observation increments to correct the back-

ground at relevant surrounding grid points. Equation (6c) indicates how to update the background-

error covariance to reflect the reduction in uncertainty from assimilating the observations. Equa-

tions (6d-e) propagate the resulting analysis and error covariance forward in time to when obser-

vations are next available. The expected analysis state is propagated forward with the full non-

linear forecast model. Model errors are assumed to be uncorrelated with the growth of analysis

errors through the tangent-linear forecast dynamics.

The appeal of the Kalman filter relative to an analysis scheme like three-dimensional varia-

tional assimilation (3D-Var; Lorenc 1986, Parrish and Derber 1992) is that the error covariances

of the analysis and the background evolve with time. The analysis reduces error variances in lo-

cations where accurate observations are plentiful, and the error covariances are also forecast for-
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ward in time, growing at a rate proportional to the local error growth. Consequently, the struc-

ture of the background-error covariances and hence the adjustment to observations xa
t − xb

t can

be quite complicated and flow- and time-dependent (e.g., Bouttier 1994).

d. Considerations in the use of Kalman filters

What approximations may limit the accuracy of the EKF? First, Kalman filters assume lin-

ear growth and normality of errors, for the assimilation problem becomes much more tractable

when these assumptions are made. Non-normality of the prior such as the bimodality in Fig. 1a

is typically assumed to be uncommon in atmospheric data assimilation. These linear and normal

assumptions may be inappropriate for atmospheric data assimilations of moisture, cloud cover,

and other aspects of the model state that may be very sensitive to motions at small scales, where

the time scale of predictability is small and errors grow and saturate rapidly. Similarly, if ob-

servations are not regularly available, error covariances estimated with tangent-linear dynamics

may grow rapidly without bound (Evensen 1992, Gauthier et al. 1993, Bouttier 1994).

Second, error statistics must be carefully estimated and monitored; in particular, it is im-

portant that the background-error covariance matrix be estimated accurately. For example, if

background error variances are underestimated, the EKF will assume the error statistics are in-

dicating that the background is relatively more accurate than the nearby observations and thus

will not correct the background to the observations to the extent it should (Daley 1991, p. 382).

Estimating Q may be particularly difficult. In practice, accurately determining even the time-

averaged statistics of Q may be quite complicated (Cohn and Parrish 1991, Daley 1992, Dee

1995, Blanchet et al. 1997). For both the Kalman filter and ensemble-based methods, the accu-

racy of the assimilation is likely to strongly depend on this assumed model for Q. Methods for

estimating Q will be discussed for ensemble-based methods in section 4d.

Another disadvantage of the Kalman filters for atmospheric data assimilation is the compu-

tational expense. Though Kalman filters provide a dramatic reduction in the computational cost

relative to full Bayesian data assimilation, for a highly dimensional state vector, the computa-

tional costs in weather prediction models may still be impossibly large. Consider the last line in
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(10). For an n-dimensional model state vector, it will require 2n applications of M to forecast

the error covariances. Some reductions of computational expense may be possible. For example,

there have been suggestions that this computation may be more practical if the tangent-linear

calculations are performed in a subspace of the leading singular vectors (Fisher 1998, Farrell

and Ioannou 2001).

Much more can be said about the Kalman filter, such as its equivalence to 4D-Var under

certain assumptions (Li and Navon 2001), the manner of computing M, iterated extensions of

the basic extended Kalman filter (Jazwinski 1970, Gelb 1974, Cohn 1997), and the properties of

its estimators (which, in the case of the discrete filter, if assumptions hold, provide the Best Lin-

ear Unbiased Estimate, or BLUE; see Talagrand 1997).

4. ENSEMBLE-BASED DATA ASSIMILATION

Ensemble-based assimilation algorithms may be able to provide a more accurate analysis

in situations where nonlinearity is strong and statistics exhibit some non-normality. If these as-

similation algorithms can work accurately with many fewer ensemble members than elements in

the state vector, then they will be computationally much less expensive as well. Consequently,

many researchers have proposed a variety of ensemble-based assimilation methods. Despite the

many differences between the various ensemble-based algorithms, all are comprised of a finite

number (perhaps 10 to a few hundred) parallel data assimilation and short-range forecast cycles.

Background-error covariances are modeled using the ensemble of forecasts, and an ensemble of

analyses are produced, followed by an ensemble of short-term forecasts to the next time obser-

vations are available. Ensemble-based assimilation algorithms also have the desirable property

that if error dynamics are indeed linear and the error statistics Gaussian, then as the ensemble

size increases, the state and covariance estimate from ensemble algorithms converge to those ob-

tained from the extended Kalman filter (Burgers et al. 1998).

The concepts behind ensemble assimilation methods have been used in engineering and

aerospace applications as far back as the 1960’s (Potter 1964, Andrews 1968, Kaminski et al.
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1971, Maybeck 1979, ch. 7). Leith (1983) sketched the basic idea for atmospheric data assim-

ilation. The idea was more completely described and tested in an oceanographic application

by Evensen (1994) and in atmospheric data assimilation by Houtekamer and Mitchell (1998).

Here, two classes of ensemble-based filters will be described, stochastic and deterministic. Both

classes propagate the ensemble of analyses with nonlinear forecast models; the primary differ-

ence is whether or not random noise is applied during the update step.

For notational simplicity, the t time subscript used in previous sections is dropped; it is as-

sumed unless noted otherwise that we are interested in estimating the state pdf at time t. We

start off by assuming that we have an ensemble of forecasts that randomly sample the model

background errors at time t. Let’s denote this ensemble as Xb, a matrix whose columns are com-

prised of ensemble member’s state vectors:

Xb = (xb
1, . . . , xb

m), (7)

The subscript now denotes the ensemble member. The ensemble mean xb is defined as

xb =
1
m

m∑
i=1

xb
i . (8)

The perturbation from the mean for the ith member is x′b
i = xb

i − xb. Define X′b as a matrix

formed from an ensemble of perturbations

X′b = (x′b
1 , . . . , x′b

m) (9)

and let P̂b represent an estimate of Pb from a finite ensemble

P̂b =
1

m − 1
X′bX′bT

. (10)

Unlike the Kalman filter or 3D-Var, the background-error covariance estimate is generated from

a specially constructed ensemble of nonlinear forecasts. The finite sample will introduce er-

rors (see, e.g., Casella and Berger, sect. 5.4 and Hamill et al. 2001, sect. 2) relative to the EKF.

However, estimating the covariances using an ensemble of nonlinear model forecasts may pro-

vide a powerful advantage over the EKF. Envision a situation where errors grow rapidly but sat-

urate at low amplitude; the linear assumption of error growth in the EKF will result in an overes-

timate of background error variance, but the differences among ensemble members will not grow
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without bound and thus should provide a more accurate model of the actual background-error

statistics. Further, unlike most 3D-Var implementations, the background-error covariances can

vary in time and space. If this error covariance model is relatively accurate, it will thus provide

a better adjustment to the observations.

Figure 2 illustrates the potential benefit from estimating background-error covariances us-

ing an ensemble-based data assimilation system. Here we see a snapshot of sea-level pressure

background-error covariances with five locations around the Northern Hemisphere, estimated

from a 100-member ensemble. The data was taken from the ensemble data assimilation experi-

ment of Whitaker et al. (2004), which tested the efficacy of assimilating only a sparse network

of surface pressure observations concentrated over the U.S., Europe, and east Asia. A covari-

ance localization with a correlation length of approximately ∼2700 km was applied (see sec-

tion 4e). Notice that the magnitude and the spatial structure of the background-error covariances

changes from one location to the next, with larger covariances for the point south of Alaska and

northern Russia and smaller covariances at other locations. The horizontal extent of the positive

covariance also changed markedly from one location to the next. The background-error covari-

ances control the magnitude of the adjustment to the observation, drawing more to observations

when background errors are large. Hence, observations will affect the analysis very differently

around each of the five locations, which is the essence of why ensemble-based algorithms may

outperform other methods.

We will first consider the update step in two general classes of ensemble filters, stochastic

and deterministic. A discussion of how forecast errors are estimated and model error treated

then follows. A brief example of the update step is then provided, followed by a description of

an important algorithmic modification, covariance localization.

a. Stochastic update algorithms

The most well-known stochastic ensemble-based data assimilation algorithm is the ensem-

ble Kalman filter, or “EnKF” (Houtekamer and Mitchell 1998, 1999, 2001, Burgers et al. 1998,

Keppenne 2000, Mitchell and Houtekamer 2000, Hamill et al. 2001, Keppenne and Rienecker
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2002, Mitchell et al. 2002, Hamill and Snyder 2002, Houtekamer et al. 2004). This algorithm

updates each member to a different set of observations perturbed with random noise. Because

randomness is introduced every assimilation cycle, the update is considered stochastic.

The EnKF performs an ensemble of parallel data assimilation cycles, i = 1, . . . , m, with

each member updated to a somewhat different realization of the observations:

xa
i = xb

i + K̂
(

yi −H(xb
i )
)
. (11)

In (11), the yi = y + y′
i are “perturbed observations,” defined such that y′

i ∼ N (0, R), and

1
m

m∑
i=1

y′
i = 0. (12)

The m sets of perturbed observations are thus created to update the m different background fields.

Here, in (11),

K̂ = P̂bHT(HP̂bHT + R)−1 , (13)

similar to the Kalman gain of the EKF gain in (6b), but permitting a possibly nonlinear H and

using the ensemble to estimate the background-error covariance matrix as in (10).

Notice that the EnKF assimilates perturbed observations in (11) rather than the observa-

tions themselves. To understand this, let X′a be a matrix of analysis ensemble member devia-

tions from the analysis mean state, as (9) defined background deviations. Let P̂a be formed from

the ensemble of analyses assimilating perturbed observations using (11). Then as the ensemble

size approaches infinity and if the dynamics are linear, P̂a = 1
m−1X′aX′aT → Pa, where Pa is the

extended Kalman filter analysis-error covariance from (6c) (Burgers et al. 1998). If unperturbed

observations are assimilated in (11) without other modifications to the algorithm, the analysis-

error covariance will be underestimated, and observations will not be properly weighted in sub-

sequent assimilation cycles.

Adding noise to the observations in the EnKF can introduce spurious observation-background

error correlations that can bias the analysis-error covariances, especially when the ensemble size

is small (Whitaker and Hamill 2002). Pham (2001) proposed an alternative to perturbing the ob-
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servations, adding noise to background forecasts in a manner that also ensures analysis-error co-

variances are equal to those produced by the EKF. Anderson (2003) proposed a sequential ob-

servation processing method that minimizes this effect. Houtekamer and Mitchell (1998) pro-

posed the use of a “double” EnKF with two parallel sets of ensembles, each set used to estimate

background-error covariances to update the other set. See van Leeuwen (1999), Houtekamer and

Mitchell (1999), and Whitaker and Hamill (2002) for a discussion of covariance biases in the

single and double EnKFs.

Several algorithms have been proposed for simplifying and parallelizing the coding of the

EnKF. One technique that is uniformly used is to form the Kalman gain from the ensemble with-

out ever forming the actual background-error covariance matrix. For a complex numerical weather

prediction model with a high-dimensional state vector, explicitly forming P̂b as in (10) would be

computationally prohibitive; for example, in a model with 107 elements in its state, storing and

readily accessing the 1014 elements of P̂b is not possible. However, in ensemble-based methods,

K̂ can be formed without ever explicitly computing the full P̂b (Evensen 1994, Houtekamer and

Mitchell 1998). Instead, the components of P̂bHT and HP̂bHT of K̂ are computed separately.

Define

H(xb) =
1
m

n∑
i=1

H(xb
i ),

which represents the mean of the estimate of the observation interpolated from the background

forecasts. Then

P̂bHT =
1

m − 1

m∑
i=1

(
xb

i − xb
)(

H(xb
i ) −H(xb)

)T
, (14)

and

HP̂bHT =
1

m − 1

m∑
i=1

(
H(xb

i ) −H(xb)
)(

H(xb
i ) −H(xb)

)T
. (15)

Of course, if the number of observations is as large as the elements in the model state, P̂bHT

and HP̂bHT will be as large as P̂b, negating this advantage. However, another possible coding

simplification is serial processing. If observations have independent errors uncorrelated with

the background, they can be assimilated simultaneously or serially (sequentially), producing
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the same result (Kaminski et al. 1971, Gelb 1974 p. 304, Bishop et al. 2001). The analysis en-

semble after the assimilation of the first observation is used as the background ensemble for

the assimilation of the second, and so on. When observations are assimilated serially, for each

observation that is assimilated, HP̂bHT and R become scalars. Thus, the inverse (HP̂bHT +

R)−1 in the gain matrix is trivial to compute. Also, the application of the covariance localiza-

tion, discussed later, is much more straightforward to apply. Serial stochastic ensemble filters

have been demonstrated in Houtekamer and Mitchell (2001), Hamill et al. (2001), Hamill and

Snyder (2002), and Anderson (2003).

The equivalence of serial and simultaneous processing is only true if observations have in-

dependent errors (Kaminski et al. 1971). Practically, however, many observations may have

vertically or horizontally correlated errors. Consider two alternatives to deal with this. First, if

the size of a batch of observations with correlated errors is relatively small, these batches can be

processed simultanteously without much more computational expense (Houtekamer and Mitchell

2001, Mitchell et al. 2002, Houtekamer et al. 2004); the matrix inverse of (HP̂bHT + R)−1

should not be prohibitively expensive. Another option is to transform the observations and the

forward operator so that the observations are effectively independent. The method for doing this

is derived in the Appendix.

Several investigators have proposed speeding up the performance of the stochastic EnKF by

separately updating different grid points independently on different processors. Keppenne and

Rienecker (2002) designed an algorithm whereby all observations in the region of a particular

set of grid points are simultaneously assimilated to update those grid points. Other distinct sets

of grid points are updated independently. Houtekamer and Mitchell (2001) propose a method

that uses both serial processing of observations and processing different regions separately from

one another. They also discuss other ways of minimizing the amount of information that needs

to be swapped between processors on a parallel computer. Reichle et al. (2002ab) and Reichle

and Koster (2003) demonstrate a parallelized EnKF algorithm applied to soil-moisture state esti-

mation.
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b. Deterministic update algorithms

Several methods have been proposed to correct the background ensemble to new observa-

tions so that P̂a → Pa without adding random noise. Algorithms that do not add stochastic noise

are called deterministic algorithms, so named because if the background ensemble and the as-

sociated error statistics are known, the ensemble of analysis states will be completely known

as well. These algorithms (e.g., Lermusiaux and Robinson 1999, Bishop et al. 2001, Ander-

son 2001, Whitaker and Hamill 2002, Lermusiaux 2002, Ott et al. 2003) update in a way that

generates the same analysis-error covariance update that would be obtained from the Kalman

filter, assuming that the Kalman filter’s background-error covariance is modeled from the back-

ground ensemble. Tippett et al. (2003) describes the similarities and differences between several

of these algorithms. In each, the background-error covariances are never explicitly formed, with

manipulations being performed using the matrix square root (i.e., eq (9), the matrix of ensemble

member deviations from the mean). As pointed out in Tippett et al., since P̂b = 1
m−1X′bX′bT

,

given a matrix U representing any n × n orthogonal transformation such that UUT = UTU = I,

then P̂b can also be represented as P̂b = 1
m−1(X′bU)(X′bU)T. Hence, many square-root filters

can be formulated that produce the same analysis-error covariance.

Since Tippett (2003) reviews many of these methods, we will explicitly describe only one

of these, a particularly simple implementation, the “ensemble square-root filter,” or “EnSRF,”

described by Whitaker and Hamill (2002), which is mathematically equivalent to the filter de-

scribed in Anderson (2001). The EnSRF algorithm has been used for the assimilation at the

scale of thunderstorms by Snyder and Zhang (2003), Zhang et al. (2003) and Dowell et al. (2004).

Whitaker et al. (2004) used the algorithm in for the global data assimilation of surface pressure

observations. Like the EnKF, the EnSRF conducts a set of parallel data assimilation cycles. It is

convenient in the EnSRF to update the equations for the ensemble mean (denoted by an overbar)

and the deviation of the ith member from the mean separately:

xa = xb + K̂
(

y −H(xb)
)
, (16)
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x′a
i = x′b

i − K̃H(x′b
i ). (17)

Here, K̂ is the traditional Kalman gain as in Eq. (13), and K̃ is the “reduced” gain used to up-

date deviations from the ensemble mean.

When sequentially processing independent observations, K̂, K̃, HP̂b and P̂bHT are all n-

dimensional vectors, and HP̂bHT and R are scalars. Thus, as first noted by Potter (1964), when

observations are processed one at a time,

K̃ =

1 +

√
R

HP̂bHT + R

−1

K̂. (18)

The quantity multiplying K̂ in Eq. (18) thus becomes a scalar between 0 and 1. This means that,

in order to obtain the correct analysis-error covariance with unperturbed observations, a modi-

fied Kalman gain that is reduced in magnitude relative to the traditional Kalman gain is used to

update deviations from the ensemble mean. Consequently, deviations from the mean are reduced

less in the analysis using K̃ than they would be using K̂. In the stochastic EnKF, the excess vari-

ance reduction caused by using K̂ to update deviations from the mean is compensated for by the

introduction of noise to the observations.

In the EnSRF, the mean and departures from the mean are updated independently accord-

ing to Eqs. (16) and (17). If observations are processed one at a time, the EnSRF requires about

the same computation as the traditional EnKF with perturbed observations, but for moderately

sized ensembles and processes that are generally linear and Gaussian, the EnSRF produces anal-

yses with significantly less error (Whitaker and Hamill 2002). Conversely, Lawson and Hansen

(2003) suggest that if multimodality is typical and ensemble size is large, the EnKF will perform

better.

Another deterministic update algorithm is the Ensemble Transform Kalman filter (ETKF) of

Bishop et al. (2001). The ETKF finds the transformation matrix T such that P̂a = 1
m−1 (X′bT) (X′bT)T →

Pa. (see Bishop et al. for details on the computation of T). Compared with the EnSRF, an ad-

vantage of the ETKF is its computational speed; a disadvantage is that the ETKF cannot apply

covariance localizations (section 5), which may make the analyses very inaccurate unless large
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ensembles are used. The ETKF has been successfully demonstrated for generating perturbed

initial conditions for ensemble forecasts about a mean state updated using 3D-Var (Wang and

Bishop 2003), and hybrid ETKF-variational schemes are being explored (Etherton and Bishop

2003).

Another deterministic update algorithm was proposed by Ott et al. (2003). This algorithm

proposes processing individual grid points independently in a manner similar to that proposed in

Keppenne and Rienecker (2002) and Evensen (2003, section 4.4). However, like the algorithms

discussed above, it adjusts the ensemble to provide the analytically correct analysis-error covari-

ance without perturbing the observations.

c. A simple demonstration of stochastic and deterministic update steps

Consider again the Bayesian data assimilation problem illustrated in Fig. 1. There, a bi-

modal 2-D probability distribution was updated to an observation of one component. Let’s ex-

plore the characteristics of the EnKF and EnSRF update applied to this problem.

A 100-member random sample was first generated from the bimodal pdf in Fig. 1a. These

samples are denoted by the black dots in Fig. 3a. Let’s keep track of the assimilation for one

particular member, denoted by the larger black dot.

The EnKF and EnSRF adjust the background to the observations with weighting factors that

assume the distributions are normal. Estimated from this random sample, the background-error

covariance is

P̂b =

(
σ2(xb

(1)) Cov (xb
(1), x

b
(2))

Cov (xb
(1), x

b
(2)) σ2(xb

(2))

)

(

150.73 109.70
109.70 203.64

)
.

The shape of this distribution is illustrated by the black contours in Fig. 2a. Here, the observa-

tion measures the same aspect as the first component of our state variable: H = [1, 0]. As in Fig.

1, assume R = 100, so HP̂bHT + R  150.73 + 100.00 = 250.73. P̂bHT  [150.73, 109.70]T,

and hence K̂ = PbHT(HPbHT + R)−1  [0.60, 0.44]T.

For the EnKF, perturbed observations were then generated, denoted by the short vertical

lines along the abscissa in Fig. 2a. Eq. (11) was then applied, updating background samples
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to their associated perturbed observations, generating analysis samples. For example, the heavy

black dot in Fig. 2a was updated to the perturbed observation marked with the “*”. The result-

ing analysis sample is the large black dot in Fig. 2b. For the noted sample, the first component

of the background state was much less than the mean, and the perturbed observation was greater

than the mean background state. The resulting analysis nudged the posterior state toward the

mean in both components. Other dots in Fig. 2b denote other updated EnKF member states.

In the EnSRF, the ensemble background mean state ∼ [47.93, 50.07]T was updated to the

mean observed value 58.0 using K̂ computed above and eq. (16), resulting in a mean analyzed

state of ∼ [53.55, 54.16]. As with the EnKF, given the positive observation increment and the

positive correlation of the background-error covariances between the two components, both com-

ponents of the mean state were adjusted upward. EnSRF perturbations from the mean were up-

dated using eq (17) and the reduced gain, here K̃  0.613 K̂.

Compare the EnKF and EnSRF random samples of the posterior from Figs. 2b-c and their

fitted distribution (black contours) with the correct Bayesian posterior (red contours). The sam-

ples from both distributions do not appear to randomly sample the correct posterior. The EnKF

and EnSRF posterior distributions are shifted slightly toward lower values in both components.

The EnSRF posterior samples preserve the original shape from the prior, though their values

are shifted in mean and compressed together. In comparison, the EnKF samples are random-

ized somewhat through the assimilation of the perturbed observations, and in this case, its dis-

tribution is somewhat more diffuse than that of the EnSRF. The EnKF samples appear to overlap

more with the correct distribution than the samples from the EnSRF.

Why can’t ensemble-based methods correctly adjust the prior ensemble to the new observa-

tions so that the samples reflect a random draw from the Bayesian posterior? The reason is that

ensemble-based methods implicitly assume a second-moment closure; that is, the distributions

are assumed to be fully described by means and covariances. The example shown above demon-

strates that some inaccuracies can be expected in these analyses if indeed there are higher-moment

details in these distributions (Lawson and Hansen 2004). Hopefully, highly non-normal distribu-

20



tions are not frequently encountered, as radically more expensive and unproven techniques than

those discussed here may then be required (e.g., Gordon et al. 1993).

d. Ensemble propagation of the pdf and model-error parameterization

In real-world applications, background-error covariances cannot simply be estimated at the

next assimilation cycle by conducting an ensemble of deterministic forecasts forward from the

current cycle’s analyses. Because of model deficiencies, even if the true state of the atmosphere

is perfectly known, the resulting forecast will be imperfect: xt
(t+1) = M(xt

(t)) + η, where here we

denote the time index in parentheses and M is again the nonlinear forecast operator. Let’s first

assume that our forecast model is unbiased
〈
η
〉

= 0, again with model-error covariance
〈
ηηT

〉
=

Q. In practice, The assumption of no bias is probably not justified, and if the bias can be deter-

mined, the forecasts ought to be corrected for this bias (Dee and Todling 2000, Evensen 2003)

or more ideally, the forecast model ought to be improved. In any case, consider the error covari-

ance at the next assimilation time. Assume again that forecast error due to initial-condition un-

certainty and model error are uncorrelated
〈(

M(xa
(t)) −M(xt

(t))
)

ηT
〉

= 0, and assume linearity

of the error growth M(xa
(t)) −M(xt

(t))  M
(

xa
(t) − xt

(t)

)
. Then the true background-error covari-

ance at the next assimilation time is

〈(
xb

(t+1) − xt
(t+1)

) (
xb

(t+1) − xt
(t+1)

)T〉
=
〈(

M(xa
(t)) −M(xt

(t)) − η
) (

M(xa
(t)) −M(xt

(t)) − η
)T〉


〈

M
(

xa
(t) − xt

(t)

)(
xa

(t) − xt
(t)

)T
MT

〉
+
〈
ηηT

〉
= MPa

(t)M
T + Q

(19)

where M is again the Jacobian of the nonlinear operator. Consider what happens when covari-

ances are estimated directly from an ensemble of forecasts propagated forward from an ensem-

ble of i = 1, . . . , m analyses using the fully nonlinear forecast model

xb
i(t+1) = M(xa

i(t)), (20)
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Calculating the expected covariance, we get

〈(
xb

i(t+1) − xb
(t+1)

) (
xb

i(t+1) − xb
(t+1)

)T〉
=
〈(

M(xa
i(t)) −M(xa

(t))
)(
M(xa

i(t)) −M(xa
(t))
)T〉


〈

M
(
xa

i(t) − xa
(t)

)(
xa

i(t) − xa
(t)

)T
MT

〉
 MP̂a

(t)M
T.

(21)

Comparing (19) and (21), it is apparent that an ensemble of analyses that are simply propagated

forward with the nonlinear forecast model will have too small an expected amount of spread,

missing the extra model-error covariance Q. Let us define some hypothetical set of background

forecasts at time t + 1 that do have the correct covariance, i.e., define x̆b
i(t+1) such that

〈(
x̆b

i(t+1) −
x̆b

(t+1)

) (
x̆b

i(t+1) − x̆b
(t+1)

)T〉
= MP̂a

(t)M
T + Q. Such an ensemble is possible if we add noise to

our existing ensemble:

x̆b
i(t+1) = xb

i(t+1) + ξi, (22)

where
〈
ξiξ

T
i

〉
= Q,

〈
ξi

〉
= 0, and

〈
xb

i(t+1) ξT
i

〉
= 0.

Several methods have been proposed for incorporating noise into the ensemble of forecasts

so that they account for model error. First, the forecast model could be stochastic-dynamic in-

stead of deterministic, with additional terms in the prognostic equations to represent interactions

with unresolved scales and/or mis-parameterized effects; in essence, M is changed so that the

ensemble of forecasts integrates random noise in addition to the deterministic forecast dynamics,

as in (4). Over an assimilation cycle, this additional variance added to the ensemble as a result

of integrating noise should be designed to increase the covariance by the missing Q. Another

possibility is that one may choose to run a forecast model without integrating noise but to add

noise to each member at the data assimilation time so as to increase the ensemble variance ap-

propriate to the missing Q. Third, it may be possible to use a multi-model ensemble to estimate

covariances, or to achieve satisfactory results by inflating the deviations of ensemble members

about their mean.

Little work has yet been done on the first of these three approaches. Buizza et al. (1999)

demonstrated a simple technique for integrating noise to account for deterministic sub-gridscale
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parameterizations. Under their methodology, the parameterized terms in the prognostic equa-

tions were multiplied by a random number. Penland (2003) outlines a more general approach for

integrating system noise in numerical models. To date, however, a comprehensive noise integra-

tion scheme has not yet been demonstrated in an operational weather prediction model. Palmer

(2001) discusses the potential appeal of such an approach.

The second general approach is to augment the ensemble-estimated model of covariances

during the update step with noise representing the missing model error covariances. Mitchell

and Houtekamer (2000) describe one such approach.

A third approach, use of multiple forecast models for generating the ensemble of background

forecasts (e.g., Houtekamer et al. 1996b, Harrison et al. 1999, Evans et al. 2000, Ziehmann

2000, Richardson 2000, Hou et al. 2001), is appealing for its simplicity. A wider range of fore-

casts is typically generated when different weather forecast models are used to forecast the evo-

lution of different ensemble members. Unfortunately, it is not clear whether or not the differ-

ences between members are actually representative of model errors; initial experimentation has

shown that the multi-model ensembles tend to produce unrealistic estimates of error covariances.

Forecast errors at larger scales ought to be mostly in balance, but when estimated from multi-

model ensembles, preliminary results suggest that the errors can be greatly out of balance, with

detrimental effects on the subsequent assimilation (personal communication, M. Buehner). See

also Hansen (2002) for a discussion of discussion of the use of multi-model ensembles in data

assimilation in a simple model.

A last approach is to modify the observation- or background-error covariances in some man-

ner so they draw more to the observations. Pham (2001) proposes reducing R with a “forgetting

factor” to achieve this. Another approach is “covariance inflation,” discussed in Anderson and

Anderson (1999). Ensemble members’ deviations about their mean are inflated by an amount r

(slightly greater than 1.0) before the first observation is assimilated:

xb
i ← r

(
xb

i − xb
)

+ xb. (23)
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Here, the operation ← denotes a replacement of the previous value of xb
i . Application of a mod-

erate inflation factor has been found to improve the accuracy of assimilations (Hamill et al. 2001,

Whitaker and Hamill 2002, Whitaker et al. 2004). Note that inflation increases the spread of the

ensemble, but it does not change the subspace spanned by the ensemble. Hence, if model error

projects into a substantially different subspace, this parameterization may not be effective.

e. Covariance localization

In ensemble assimilation methods, the accuracy of error statistics is especially important.

Unlike 3D-Var, the effects of a mis-specification of error statistics can affect the analysis-error

covariance, which is then propagated forward in time. Hence, if the analysis errors are under-

estimated in one cycle, the forecast errors may be underestimated in the following cycle, under-

weighting the new observations. The process can feed back on itself, the ensemble assimilation

method progressively ignoring observational data more and more in successive cycles, leading

eventually to a useless ensemble. This is known as filter divergence (e.g., Maybeck 1979, p.

337, Houtekamer and Mitchell 1998). For the ensemble-based methods, filter divergence can

be induced by many causes. One of the most crucial is to model background-error covariance

realistically (Hamill et al. 2001). As discussed in the previous section, an adequate parameter-

ization of model error is necessary in all but perfect model simulations. However, filter diver-

gence can occur even in simulations where the forecast model is perfect, for background-error

covariances are typically estimated imperfectly from small ensembles. While more ensemble

members would be desirable to reduce the sampling error in estimating background-error covari-

ances, more members means more computational expense.

One common algorithmic modification to improve error covariance estimates from ensem-

bles is covariance localization. The covariance estimate from the ensemble is multiplied point

by point with a correlation function that is 1.0 at the observation location and zero beyond some

prespecified distance. Houtekamer and Mitchell (1998), Ott et al. (2003) and Evensen (2003)

use a cutoff radius so that observations are not assimilated beyond a certain distance from the

grid point.
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A preferable approach is to use a correlation function that decreases monotonically with in-

creasing distance (Houtekamer and Mitchell 2001). Mathematically, to apply covariance local-

ization, the Kalman gain K̂ = P̂bHT(HP̂bHT + R)−1 is replaced by a modified gain

K̂ =
(
ρS ◦ P̂b

)
HT

(
H(ρS ◦ P̂b)HT + R

)−1
, (24)

where the operation ρS ◦ in (24) denotes a Schur product (an element-by-element multiplica-

tion) of a correlation matrix S with local support with the covariance model generated by the en-

semble. For horizontal localization, one such correlation matrix can be constructed using an ap-

proximately Gaussian-shaped function described in Gaspari and Cohn (1999). The Schur prod-

uct of matrices A and B is a matrix C of the same dimension, where cij = aij bij . When covari-

ance localization is applied to smaller ensembles, it can actually result in more accurate analyses

than would be obtained from larger ensembles without localization (Houtekamer and Mitchell

2001). Mathematically, localization increases the effective rank of the background-error covari-

ances (Hamill et al. 2001). In the extreme, if the correlation matrix S were the identity matrix,

the covariance model would consist of grid points with variances and zero covariance and the

rank of the covariance matrix after localization would increase from m − 1 to n, the dimen-

sion of the state vector. In practice, such an extreme localization would harm the quality of the

analysis, destroying the mass-wind balance (Mitchell and Houtekamer 2002, Lorenc 2003) and

prohibiting the observation from changing the analysis at nearby grid points. Hence, broader lo-

calizations are typically used. Generally, the larger the ensemble, the broader the optimum cor-

relation length scale of the localization function (Houtekamer and Mitchell 2001, Hamill et al.

2001). See Whitaker et al. (2004) and Houtekamer et al. (2004) for examples of ensemble as-

similations that also include a vertical covariance localization.

As a concrete example of horizontal covariance localization, consider Fig. 4. This used the

same data set used in Fig. 2, a global ensemble-data assimilation scheme utilizing only sea-level

pressure observations (Whitaker et al. 2004). Figure 4a provides a map of sea-level pressure

correlations at grid points around the Northern Hemisphere with a grid point in the western Pa-

cific Ocean on 0000 UTC 14 December 2001. When directly estimated using the 25-member
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ensemble subsampled from the 200-member ensemble (Fig. 4b), correlations for grid points in

the region around the observation are positive. The shape of the correlation function was anisotropic,

with positive correlations generally limited to a region east of the axis of the cyclone. Back-

ground errors for regions in the eastern Pacific and near the Greenwich meridian also appeared

to be highly correlated with background errors at the observation location. However, when the

correlations are estimated from a 200-member ensemble, it’s apparent that these distant corre-

lations in the 25-member ensemble were caused by the limited sample size. The errors in the

eastern Pacific and along the Greenwich meridian were not dynamically interconnected with the

errors in the western Pacific. When the covariance localization function (Fig. 4c) was applied to

the 25-member ensemble, the resulting correlation model (Fig. 4d) more closely resembles that

from the larger ensemble.

In applying the covariance localization, distant grid points are forced to be statistically inde-

pendent. Should they be? As a thought experiment, consider a two-member ensemble. Dynam-

ically, there is no a priori reason to expect that, say, the growth of spread over Japan is dynam-

ically interconnected to the growth of spread over Africa, and neither interconnected with the

growth of differences over South America. This two-member ensemble may identify many dis-

tinct regions where rapid growth of differences is occurring, regions but with a covariance model

estimated from only 2 members, it assumes they are all intimately coupled. Covariance local-

ization is thus a heuristic attempt to modify the model of background-error covariances so that

a limited-size ensemble will not represent distant, distinct features as dynamically interrelated

when in fact they only appear to be due to limited sample size. If indeed distant regions are in

fact dynamically coupled, the localization will cause the loss of this information. The effect on

the data assimilation will be that observations will not be able to change the analysis and reduce

the analysis-error variance in distant regions; local observations will have to be relied upon in-

stead. This is judged to be less detrimental than the opposite, to let observations affect distant

regions when this is inappropriate.

5. DISCUSSION
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a. Major research questions

Researchers are just beginning to test ensemble-based atmospheric data assimilation meth-

ods in full numerical weather prediction modeling systems using real observations. From these

and other studies, we can make an educated guess at what some of the major issues that will

need to be resolved before operational implementation is practical.

As discussed previously, in order to ensure a high-quality analysis, great care must be taken

to ensure that the error-covariance models are realistic in ensemble methods. These methods cy-

cle the covariance estimates. Thus, for example, if observations errors are assumed to be unbi-

ased and independent but in fact are biased or correlated (Liu and Rabier 2003), these errors will

cause the analysis-error covariance to be misestimated, later affecting the subsequent background-

error estimates and subsequent fit to the observations. Accurate estimation of model error in par-

ticular is likely to be crucial, as was discussed in the previous section 4d.

Practically, an ensemble-based assimilation method ought to be self-correcting, able to de-

tect when the system is not appropriately fitting the observations. Theoretically, this can be done

by monitoring the innovation statistics (y − H(xb)), which ought to be white noise with zero

mean and covariance (HP̂bHT + R) (Maybeck sect. 5.4, Dee 1995). The influence of model

error can then be increased or decreased so the innovation statistics have the correct properties

(Mitchell and Houtekamer 2000).

Other problems may be more subtle. For instance, initial tests (e.g., Houtekamer et al. 2004)

suggest that when many observations are frequently assimilated, the errors due to chaotic effects

may not grow rapidly after the analysis, as expected. The reasons for this are not yet fully ap-

parent. It is known that the more observations that are assimilated, the whiter and more random

are the analysis errors (Hamill et al. 2003); consequently, it may take longer than the time be-

tween updates for the dynamics to organize the perturbations into growing structures. The ran-

domization of analysis errors may also be exacerbated by the addition of random model error to

the background forecasts or because the computational costs require the use of reduced- resolu-

tion models with unrealistically slow error growth characteristics.
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A final major concern is the computational expense. The cost of most ensemble methods

scales as the number of observations times the dimension of the model state times the number of

ensemble members. In the coming years, observations will increase in number faster than com-

puter power will grow. It may be possible to mitigate this problem in one of several ways. Per-

haps computations can be speeded up through parallelization (Houtekamer and Mitchell 2001,

Keppenne and Rienecker 2002), the method can be cast in a variational framework where the

costs do not scale with the number of observations (Hamill and Snyder 2000), or many high-

density observations can be combined into fewer “super-observations” (Lorenc 1981).

b. Comparisons with 4D-Var

An important question is whether, for a given amount of computer time, a better analysis

could be produced by an ensemble-based assimilation or by the current state-of-the art, four-

dimensional variational analysis (4D-Var; Le Dimet and Talagrand 1986, Courtier et al. 1994,

Rabier et al. 1998, 2000). Such direct comparisons of ensemble assimilation methods and 4D-

Var in realistic scenarios have yet to be performed and ideally should wait until ensemble meth-

ods are more mature.

Some intelligent guesses can be made regarding their relative advantages and disadvan-

tages; for another view, see Lorenc (2004). Ensemble-based methods are much easier to code

and maintain, for neither a tangent linear nor an adjoint model of the forecast model is required,

as they are with 4D-Var. Ensemble-based methods produce an ensemble of possible analysis

states, providing information on both the mean analysis and its uncertainty. Consequently, the

ensemble of analysis states can be used directly to initialize ensemble forecasts without any ad-

ditional computations.

Another advantage is that if the analysis uncertainty is very spatially inhomogeneous and

time dependent, in ensemble-based methods this information will be fed through the ensemble

from one assimilation cycle to the next. In comparison, in 4D-Var, the assimilation typically

starts at each update cycle with the same stationary model of error statistics. Hence, the influ-

ence of observations may be more properly weighted in ensemble-based methods than in 4D-
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Var. Ensemble-based methods also provide a direct way to incorporate the effects of model im-

perfections directly into the data assimilation. In comparison, in current operational implemen-

tations of 4D-Var, the forecast model dynamics are a strong constraint (Courtier et al. 1994; but

see Bennett et al. 1996 for a possible alternative). If the forecast model used in 4D-Var does not

adequately represent the true dynamics of the atmosphere, model error may be large, and 4D-Var

may fit a model trajectory that was significantly different than the trajectory of the real atmo-

sphere during that time window.

Ensemble-based techniques may have disadvantages relative to 4D-Var, some that will only

be discovered through experimentation. Ensemble-based techniques are likely to be at least as

computationally expensive as 4D-Var, and perhaps significantly more expensive when there are

an overwhelmingly large number of observations. Ensemble approaches may be difficult to ap-

ply in limited-area models because of the lateral boundary conditions, and the method is very

sensitive to misestimation of the error covariances.

c. Applications of ensemble-based assimilation methods

Ensemble data assimilation techniques offer the potential of generating calibrated analy-

ses that may be useful for a variety of applications. Anderson (2001) showed that the ensemble

techniques can be used for parameter estimation. Hamill and Snyder (2002) showed that ensem-

ble assimilation techniques facilitate the calculation of regions where adaptive observations are

necessary. Snyder and Zhang (2003), Zhang et al. (2003), and Dowell et al. (2004) demonstrate

the feasibility of ensemble filters for mesoscale data assimilation of radar observations. Reichle

et al. (2002ab, 2003) apply ensemble filters to estimation of soil moisture. Hamill et al. (2003)

demonstrate how analysis-error covariance singular vectors, the most rapidly growing forecast

structures consistent with analysis errors, can be diagnosed using ensemble filters.

6. CONCLUSIONS

This manuscript presented a brief tutorial of ensemble-based data assimilation. The tech-

nique is being explored by a rapidly growing number of researchers as a possible alternative to
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other atmospheric data assimilation techniques such as three- and four-dimensional atmospheric

data assimilation. The technique is appealing for its comparative algorithmic simplicity and its

ability to explicitly deal with model error. Testing of ensemble filters has progressed rapidly

over the past few years from perfect-model experiments in toy systems to the assimilation of real

observations into global models. Recent results are both suggestive of the potential and hint that

substantial continued development is necessary for these methods to be competitive with or su-

perior to the existing state-of-the-art techniques.
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8. APPENDIX: SERIAL PROCESSING OF NON-INDEPENDENT OBSERVATIONS IN

THE ENSEMBLE-BASED ASSIMILATION

As previously outlined, if observations have independent errors, then they can be processed

serially, which may be of computational advantage. If the observations are not independent, the

EnKF update equation (19) can be transformed so that serial processing of observations can oc-

cur.

Recall that yt = H(xt
t) + ε, where ε ∼ N (0, R), where R is no longer assumed to be di-

agonal. However, R is symmetric and positive definite, so it has a decomposition of the form

R = QRΛRQT
R, where QR is a unitary matrix with properties that QRQT

R = I and QT
R = Q−1

R (here

QR does not denote model error). ΛR is a diagonal matrix of associated eigenvalues.

Let’s denote a pseudo-observation ỹ = QT
Ry, or alternately, y = QRỹ. Then ỹ = QT

RH(xt
t) +

QT
Rε. Hence 〈

QT
Rε (QT

Rε)T
〉

= QT
R

〈
εεT
〉

QR = ΛR. (A1)

Define H̃ = QT
RH, or equivalently H = QRH̃. Substituting this definition of H and y into the

EnKF update equation (25), we get

xa
i = xb

i + P̂bHT(HP̂bHT + R)−1
(

yi −H(xb
i )
)

= xb
i + P̂b(QRH̃)

T
(QRH̃PbH̃TQT

R + QRΛRQT
R)−1

(
QRỹi − QRH̃(xb

i )
)

= xb
i + P̂bH̃TQT

RQR(H̃P̂bH̃T + ΛR)−1QT
RQR

(
ỹi − H̃(xb

i )
)

= xb
i + P̂bH̃T(H̃P̂bH̃T + ΛR)−1

(
ỹ − H̃(xb

i )
)
.

(A2)

Thus, given a batch of observations with correlated errors and known observation-error covari-

ance matrix R for these observations, one determines the eigenvectors QR and eigenvalues ΛR of

R, forms the transformed perturbed observations ỹ and operator H̃ and then solves the last line

of (A21) can be used to serially process observations. See Kaminski et al. (1971) for an essen-

tially equivalent algorithm using a Cholesky decomposition.
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FIGURE CAPTIONS

Figure 1. Example of Bayesian data assimilation update. Here the model state is two dimen-

sional and a single observation is assimilated. This observation measures the same variable

as the first component of the model state. (a) Probability density for prior joint and marginal

distributions (solid) and sample observation distribution (dashed). The three contours en-

close 75 %, 50 %, and 25 % of the probability density, respectively. (b) Probability density

for posterior distributions. Contours levels set as in (a).

Figure 2. Background-error covariances (colors) of sea-level pressure in the vicinity of five se-

lected observation locations, denoted by dots. Covariance magnitudes are normalized by

the largest covariance magnitude on the plot. Solid lines denote ensemble mean background

sea-level pressure contoured every 8 hPa.

Figure 3. Illustration of the EnKF and EnSRF with a two-dimensional state variable and ob-

servations observing the same as xb
(1). (a) Random samples (black dots) from the probabil-

ity distribution in (1), and the original prior pdf, contoured in red. Implied bivariate normal

probability background distribution estimated from the sample ensemble contoured in black,

and the observation sampling distribution (dashed). Solid vertical lines along abscissa de-

note individual perturbed observations sampled from this distribution. The one large black

dot and the perturbed observation marked with a star denote the sample discussed in the

text. (b) Analyzed samples from the EnKF assimilation scheme (dots), the implied analysis-

error bivariate normal distribution from this sample (solid black contours), and the true pos-

terior pdf from Fig. 1 (red). (c) Analyzed samples from EnSRF (dots), implied bivariate

normal pdf (solid black contours) and the true posterior pdf (red). In each panel, the three

contours enclose 75 %, 50 %, and 25 % of the probability density, respectively.

Figure 4. Illustration of covariance localization. (a) Correlations of sea-level pressure directly

estimated from 25-member ensemble with pressure at a point in the western Pacific (colors).

Solid lines denote ensemble mean background sea-level pressure contoured every 8 hPa. (b)
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As in (a), but using 200-member ensemble. (c) Localization function, (d) Correlation esti-

mate from 25-member ensemble after application of covariance localization.
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Figure 1. Example of Bayesian data assimilation update. Here the model state is two dimen-

sional and a single observation is assimilated. This observation measures the same variable

as the first component of the model state. (a) Probability density for prior joint and marginal

distributions (solid) and sample observation distribution (dashed). The three contours en-

close 75 %, 50 %, and 25 % of the probability density, respectively. (b) Probability density

for posterior distributions. Contours levels set as in (a).
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Figure 2. Background-error covariances (colors) of sea-level pressure in the vicinity of five se-

lected observation locations, denoted by dots. Covariance magnitudes are normalized by

the largest covariance magnitude on the plot. Solid lines denote ensemble mean background

sea-level pressure contoured every 8 hPa.
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Figure 3. Illustration of the EnKF and EnSRF with a two-dimensional state variable and observations observing the same

as xb
(1). (a) Random samples (black dots) from the probability distribution in (1), and the original prior pdf, contoured

in red. Implied bivariate normal probability background distribution estimated from the sample ensemble contoured

in black, and the observation sampling distribution (dashed). Solid vertical lines along abscissa denote individual per-

turbed observations sampled from this distribution. The one large black dot and the perturbed observation marked with

a star denote the sample discussed in the text. (b) Analyzed samples from the EnKF assimilation scheme (dots), the

implied analysis-error bivariate normal distribution from this sample (solid black contours), and the true posterior pdf

from Fig. 1 (red). (c) Analyzed samples from EnSRF (dots), implied bivariate normal pdf (solid black contours) and

the true posterior pdf (red). In each panel, the three contours enclose 75 %, 50 %, and 25 % of the probability den-

sity, respectively.
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Figure 4. Illustration of covariance localization. (a) Correlations of sea-level pressure directly estimated from 25-member

ensemble with pressure at a point in the western Pacific (colors). Solid lines denote ensemble mean background sea-

level pressure contoured every 8 hPa. (b) As in (a), but using 200-member ensemble. (c) Localization function, (d)

Correlation estimate from 25-member ensemble after application of covariance localization.
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